

WELCOME

Math 2

Chapter 5/6: Triangle Congruency Theorems

Last Night's HW: None

Tonight's HW: 5.1 Worksheet

Warm Up

Find the missing sides in the special right triangles:

1. 2.

Chapter 5-6 Learning Targets

Math 2 Chapter 5-6: Triangle Congruence Theorems

	Learning Target	Text	I know it	I partially get it	I don't get it
A	I can state postulates or theorems that can be used to prove two triangles are congruent.	5.2			
В	I can prove that two triangles are congruent using the Side-Side congruence theorem.	5.3			
С	I can prove that two triangles are congruent using the Side-Angle-Side congruence theorem.	5.4			
D	I can prove that two triangles are congruent using the Angle-Side- Angle congruence theorem.	5.5			
Е	I can prove that two triangles are congruent using the Angle-Angle- Side congruence theorem.	5.6			
F	I can use right triangle congruence theorems to prove right triangles are congruent (HL).	6.1			
G	I can use corresponding parts of congruent triangles (CPCTC) to prove angles and segments are congruent.	6.2			
Н	I can solve problems using the Isosceles Triangle Base Theorem and its converse.	6.2			
I	I can write the inverse and contrapositive of a conditional statement.	6.4			
J	I can perform basic transformations on the coordinate plane	5.1			

Chapter 5 Section 1 Learning target

ı		I can perform basic transformations on the coordinate plane	5.1
	J	I can perform basic transformations on the coordinate plane	3.1

Transformation Basics Review

Figures in a plane can be reflected, rotated, or translated to produce new figures.

Preimage:

The original version of the figure be transformed

Image:

The new version of the figure being transformed

Transformation:

The operation that maps, or moves, the preimage onto the image

Image Notation

Use the symbol from the previous image and add a prime symbol

$$\bullet A \longrightarrow \bullet A'$$

"The preimage "A" maps to the Image "A" Prime"

Translation

The mapping of a figure from one location onto another location while keeping the orientation.

"The preimage is transported onto the Image"

2) translation: 4 units right and 1 unit down

Reflection

A transformation that uses a line like a mirror in order to reflect a figure to the opposite side

The line *m* is the "Line of Reflection"

Requirements For Reflections

1. Points are reflected equal distance from line of reflection

2. Reflected perpendicular to line of reflection.

3. If P is on line then stays on line

4) reflection across the x-axis

Reflect across the line y=x

Rotation

A transformation that rotates a figure around a fixed point

- •The point \mathcal{L} is called the "Center of Rotation"
- •Rays extended from \mathcal{L} give the "Degree of Rotation"

Requirements For Rotation

1.Points stay equal distance from the center of rotation

2. All points move in the same direction and amount.

3. If point Q is on center then stays

 rotation 90° counterclockwise about the origin

Rotation Direction

Clockwise: The figure travels in the same direction of the hands on a clock

Counter Clockwise: The figure travels the opposite direction of the hands on a clock